
of strength and the kinetic concept of strength. As in the case of a constant load, it can 
be assumed that F is independent of t - regardless of temperature, each soil corresponds to 
a single value of F (except for sand with t = -15~ this result apparently being connected 
with a deviation from the pressure dependence of the freezing point of water described by 
Eq. (3)). 

Although the form of the temperature-time (or rate) dependence of strength will be re- 
fined later, it can be taken as an established fact that temperature is connected with only 
one of the two parameters of the rheological curve. This makes it possible to significantly 
shorten and simplify tests and calculations performed to determine the strength of frozen 
soil. 
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PROBLEM OF THE THEORY OF BEAMS WITH INITIAL STRESSES 

A. G. Kolpakov UDC 539.3 

Aysymptotic averaging methods - which have been widely used for monolithic composites 
(see [i-3] and the accompanying bibiliographies) - are now being used to study bodies with 
a periodic structure that occupy thin regions: plates and beams [4-6]. In the present 
study, we make a transition from a three-dimensional problem of the theory of elasticity 
with initial stresses in the region of the small diameter E (which is formalized in the 
form s + 0) to a problem of beam theory. In the general case, the new problem (which is 
asymptotically exact) differs from the classical problem. It coincides with the classical 
problem for uniform beams, however, i.e., the difference between the asymptotic and classical 
theories is seen for beams of complex structure. The use of such beams in modern structures 
makes the corrections introduced by asympototic theory practically important. The difference 
between the given problem and the problem examined in [6] is the asymmetry of the coeffi- 
cients. This leads to the appearance of new elements in the use of asymptotic methods, as 
well as to several new cellular problems. As will be seen from the below discussion ~, the 
order of the initial stresses o*ij relative to the diameter of the region ~ plays a signi- 
ficant role in the problem. To account for this, we take the initial stresses in the form 

= a-2o*ij(-2) + s-lo*ij(-l) + .... corresponding to bending of the beam or its axial o*ij 
tension with fixed forces. The axial tension of a beam with fixed strains, when o*ij is on 

the order of E -4, leads to results similar to [7-9] for monolithic bodies. This case is 
not examined here. 

Formulation of the Problem. We will examine a body of periodic construction obtained 
by repeating a certain unit cell (UC) PE (E is its characteristic dimension) along the Ox I 
axis (see Fig. i). As a result, we have a body of periodic structure with the character- 
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Fig. 1 

< 

istic diameter e << I - a beam. The equations of equilibrium (vibration) of the beam as a 
three-dimensional elastic body with initial stresses will be written in the form [i0] 

(.~ (~, x / ~ ) ~ L ) J  = / ~  in Q~, 

~ i ;kl  (x, x/s) u~,z'~ = 0 on S~, u ~ (x) == 0 on r~. ( 1 )  

Here, ~/Sxj =, j; Q~, SE, F~ is the region occupied by the beam and its surface (see Fig. I); 
[-a, a] is the projection of the region Qs on the Ox I axis; u e are the displacements; f = 
(c-2f~ s-2f~ a-=f~ are the body forces (for the problem of natural vibration f = 
E-2p(x/e)mue~ where m is the natural frequency); The multiplier E -2 is introduced so that 
when e + 0 the limiting values are nontrivial [6];~ijk~ (x, x/s) are known [i0] combinations 

of the tensor of elastic constants E-~aijkZ (x/g) and the initial stresses o*ij(x, x/s): 

.~;~ (x. x/~) = ~-%jht (x/~) + ~ - ~ I ~  ) (~, x,,~) t- ~ - ' ~ I ~  ) (x, x / ~ ) +  . . . .  ( 2 )  

w h e r e  ~ijh~4(m) ,(x, x/e)  = ~ ( , n )  (x, x /e)  8~h (tn : - -  2.. - -  1 . . . .  ); 

6 i j  i s  t h e  K r o n e c k e r  d e l t a .  

Note i. In connection with the fact that the coefficients (2) differ from the coeffici- 
ents normally used (which are on the order of unity for monolithic bodies [i-3, 7, 8], on the 
order of s-3 for plates [4, 5], and on the order of E -~ for beams [6]), we will comment 
briefly on the terms in (2). The term g-~aijks guarantees that the bending stiffness of the 
beam will be nontrivial at s + 0 (as is known, the stiffness of a beam in bending is propor- 
tional to its diameter to the fourth power [ii]). The term ~-2o*js corresponds to ten- 
sion of the beam by a force which is independent of ~ (constant tension of the beam). In 
fact, multiplied by the cross-sectional area - which is on the order of s 2 - this quantity 
remains independent of ~. The term e-lo*jZ(-~) corresponds to the stresses which arise in 
the beam during bending, as follows from ~6]. 

The functions p(y), aijks o*js y) are periodic with respect to Yz and have 
the period [0, m], where [0, m] is the projection of the UC P~ = s-~Ps = {y = e-~x: x ~ Ps} 
on the Oy z axis. 

Asymptotic Expansion. Let us examine problem (1-2) when ~ § 0. To do this, we make 
use of the asymptotic expansion [6] 

u s = .(0)(~'1) + ~u (" ( x .  y) + . . . .  ~ ~ u  (h) (xl. y), ( u  (~)} = 0 ~t k>~ 1. 
h ~ O  

oo 
~ - - 4 ~ ( - - 4 )  / ~  - - 3  ( - - 3 )  / rn (rn) 

( ~ i j = o  v~; ~ " - I , Y ) + e  (rij ( x ~ . y ) +  . . .  = ~ e: (hi (xt ,  Y). 
r n ~ - - 4  

(3) 

Here, x I is a slow variable along the axis of the beam [-a, a]; y = x/E is a fast variable; 
the functions in the right sides are assumed to be periodic with respect to Yl, with the UC 

P 

[0, m]; <-> = (i/m)~-dy is the mean value of P1 over the UC. 
1 

Analysis of problem (1)-(2) for e § 0 breaks down into two stages [4]. The first 
entails obtaining the equations of equilibrium. As follows from [6], it is not involved 
with local governing equations (in the given case, with the coefficients~ijk~), and it is 
the only stage for any equation of state. There are the following equations for the forces 

N(m)ij ~-a) (-a) = <o(m)ij>, bending moments M(m) = <yaoj~(m)>, and turning moment ~ = M = - M~3 : 
aj 
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N<m) : Fa (F~ 0 at m 3, Fa </~ at m - - 2 ) ;  ~ l , l x  : : ~ : : 

~'(-'~) N~-~ -~) <[ly~> (in the problem of natural vibration//~ i 

+ - = < _ 

while the following relations [6] are satisfied for local stresses o(m)ij 

i j , j y ' ~  0 in QI, o : 0 on y~, 

(4a) 

(4b) 

(41c) 

(5) 

where Qig = {(xl, y:, y~): y = x/e, x ~ Qe}; 7i g is the lateral (free) surface Q e. Rela- 
tions (4a)-(4c), (5) are independent of the governing relations. Here and below, the Latin 
indices take the values i, 2, and 3 and the Greek indices take the values 2 and 3; 8/8xi = 
ix; 8/8y i = ,iy. 

Note 2. By the additional stresses [i0] oij , here and below we mean the quantities 

(6) 
- - o  . ( - - , ) ~  _ - - 1  ~ ( - - 1 )  

The total stresses are equal to the sum of the initial and additional stresses: o*ij + oij. 

The second stage of analysis of the problem consists of obtaining the governing rela- 
tions for the beam, which establish the relationship between N(m)al , M(-a)8,~ and the 
strain characteristics. In contrast to the first stage, this stage does involve local 
governing relations (with initial stresses, in our case) and is the main stage in the pre- 
sent investigation. 

Note 3. With the use of two-scale expansion, the differentiation operators are repre- 
sented in the form of the sum of the operators 3/8x i and 3/8y i. For the functions of the 
arguments x I and y = (Yl, Y2, Y~), in the right sides of (3), this representation takes the 
form [6] 

e-lOlOy= (a = 2, 3), s - lO lOy l  § OIc)xt. 

Having inserted (3) into (6), with allowance for note 2 we obtain 
oo 

m (~ gh . - - 2  ~ . # ( - - 2 )  - - 1 - , ( - - 1 )  ~J :Z (~-'a~j~+o ~,J~ +~ ~B~ + ..) 
m = - - 4  h = 0  

U(h) 8-- L (h) h,~x + uh,ly "7- . . .  ). 

E q u a t i n g  t h e  t e r m s  w i t h  i d e n t i c a l  p o w e r s  o f  e i n  ( 6 ) ,  we h a v e  

(7) 

~(m) (~+4) , . . ~ + ~ )  (m 4,  - - 3 ) ;  v = a i jh luk , lx  ~ uij~lu~,zy = - -  ( 8 a )  

o ( - 2 )  _ . (~) ~ ( - 2 ) .  (o) (3) ~ .~g(-~)u(1) ( 8 b )  
i j  = ui~hlUh,lx ~ "~r"ijhl Uh,lx ~ a i jh lUh, ly  ~ ijM h,ly i " 

etc. We will examine problem (5), (8) when m = -4, with the following conditions from (3): 
u (i) is periodic with respect to Yl and has the UC [0, m] and <u(i)> = 0. Allowing for the 
fact that the function of the argument x i plays the role of a parameter, its solution can be 
found in the form [1,2, 4] 

u (n = --y=u~,~= (x~)e I + U (y)(p ( x l ) +  V (xl) ( 9 )  

({el} are basis vectors of the coordinate system). In obtaining (9), we make use of the 
functions XP~(V)i(v = 0, i) - the solutions of the so-called celluar problem (CP) of beam 
theory introduced in [6]: 

(aij~z (y) vp~(~) v ~h,z~ + au,1 (Y) y ~ ) j ~  = 0 in P1, 

(auh z (y) v~(v)  ~h,zy + a q m ( Y )  y ~ ) n j = 0  on ?l, 
(io) 

X~(V~(Y) is periodic with respect to Yl and has the period [0, m] and <Xpa(v) = 0 (71 is 
the lateral (free surface of PI (see Fig. i). Here, we considered that [6] 
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xlgl(O)(y) = - -  ~/lte 1 and U~ ~ (Xl) ----- 0. 

= 0, s 2 = i, s a =-i, = at = is connected 
at 

The function U(y) i= y~s~e~, where s l 

with the torsion of a rod (this subject is examined in more detail in [6]). 

In accordance with [6], substitution of (10) into (Sa)-(8b) gives the equalities 

~If  4 ) =  0; (lla) 

O(--a) (2) (o) 
i j  ~- ai jhl  (y)Uh,lv Jr- a l j n  (y)yaUa, lx lx  (Xl) -j- aij  u (y) V l , l x  (xl) ( l i b )  

+ au~ (y) sgy~,~ (x 0. 

L e t  u s  e x a m i n e  p r o b l e m  ( 5 )  w i t h  t h e  f o l l o w i n g  c o n d i t i o n s  when m = - 3  ( t a k i n g  i n t o  
a c c o u n t  ( l t a - l l b ) :  u '1(2) i s  p e r i o d i c  w i t h  r e s p e c t  t o  Yl and  h a s  t h e  UC [0 ,  m] and  ( u ( 2 ) >  = 
0. Its solution can be written in the form [6] 

!1 (2) = X 11(0) (y) V~,I~ (xl) - -  YcYa.~= (x~) e~ +l X ] ~(~) ~ff] [" ~ U (0)~, 1~1~ (Xl) 

where X ~ a ) ( y ! ) i s  the solution of the CP describing torsion [6]: 

~.~v + a~ (y) s~v~)jv = 0 in P~, 
v(a) 

(aijh~ (y) ..-a.,v @ aij~t (y) st~y~. ) n~ : 0 on 'h, 

X(~)(y) is periodic with respect to YI and has the period [0, m] and <X (~)> = 0. 

After averaging P~ over the UC, insertion of (12) into (8a) with m = -3 gives the 
following (see [6] for more detail) 

N ~ 7  ~) o , - 1  (o) Bo -~- A I l I V I , l X  -1" AllCC/ga,l-XlX @ llq),lX~ 

= At~nV~.xx + nt~mua.xx~ @ ~r (13) 
. / l {  t - ~  (o) 

Here, the coefficients A~, B~ij (~, v = 0.1) are given by Eqs. (3.30) from [6] and are 
expressed through the functions entering into the CP. This means in particular that the 

total stresses and moments in the beam will be N*ll + N!~ 3), M*~t + M~31Jf * + ~/, where the 
asterisks denote the forces and moments corresponding to the initial stresses o*ii. 
These quantities are calculated from standard formulas [ii]. As can be seen, for thin beams, 
torsional rigidity is independent of the initial stresses - in contrast to [10]. 

The authors of [6] did not further investigate the governing relations for the case of 

the absence of initial stresses -when, due to o*ij (-2) = o*ji (-2), we have N(-2)ij = N(-2)ji 

becausez the above-indicated symmetry made it possible to exclude the quantities; 

N~] =) from (4a)-(4b) without any additional information on them. In our case N(. -=) does 
lJ 

not have the indicated symmetry, and obtaining the limiting problem requires further study 
of asymptote (3). Specifically, we need to examine N(.7 2). 

Let us insert u(I) into (8b) in accordance with (10). Then considering that ui~ = 
0, we obtain 

0.I~ -9) (2) ~ (~l) I ~;t(--~) (O) r,~f(--9), (0) ~ , ( - -9 )  
"" = a i p t l l l h , l X +  u i jh luk , lvT  ~ i i M  llh,lx - -  o~ t j l eu~ , l=  + ~ i j ~ S ~ q D  (Xl) = 

- I,~ § [ ( o ; F % ~  =,(-~,~ ~,,(o) .(-,) --  - -  "i= - i l )  ~=.ix j -  o jy  6ig*~'qo(x,)]. ( 1 4 )  

Here, fij represents the first two terms in the right side of (14). We find that fij = fji 
for these terms, by virtue of the symmetry of the elastic constants (aiiks = aiikg ). Terms 

�9 �9 ) �9 �9 -J j 

which are asymmetrlc wlth respect to i and ] enter into the right side of (14) only in the 
expression in square brackets. Then the forces N~ =) can be represented in the form 

N ( - 2 )  / *(--2)e _*(--2).. \ (o) z_ ,, /_*(--2)\  (15) 
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Tension, Bending. The below relation follows in particular from (15) 

N~7 ~) = N~] -~) + K~, ( 1 6 )  

where 

/r~'p = <__ *(--2)~ I *(--'))g: *(--9,)\ ,  (O) ( Z '  -~  <6~2 -~ )  - -  O~--2)> q) (Xl).  

With  a l l o w a n c e  f o r  ( 1 6 ) ,  we p r o c e e d  a s  f o l l o w s  t o  e x c l u d e  N f r o m  ( 4 a ) - ( 4 b ) :  
t i a t i n g  ( 4 b )  and  u s i n g  ( 1 6 ) ,  we o b t a i n  

0 ( - -  ~I (-~) + ~ ( - ~ ) ~  (-~) " : . ~ , '~1~ ,, = ( -  ~ v ~ , ~  T x ~ ;  ~) + K p ) ~  = 

From t h i s ,  we o b t a i n  an e q u a t i o n  w h i c h  r e p l a c e s  ( 4 a )  and ( 4 b )  when m = - 2 :  

~I<-~) ( 1 8 )  
- . ,  ~ , , ~  = <s~>- x~,,~. 

Torsion. The governing equations for the turning moment ~f l= M (-2) - M (-2) are con- 
23 32  

rained in (13). As regards the equilibrium equation, we can use (4b) to obtain 

- . K , , =  + ( N ~ V )  - -  x ~ ;  ~>) - -  </~y~> - -  < i~y~} .  

(17) 

differen- 

Here, as above, we encounter a situation connected with the asymmetry of N~ -2). In accord- 
ance with (16), we have 13 

.v~7 ~) - x ~ ;  ~ = K =- ,,,' .<_~)~.~ ~ - ~*~-~v~,' ,  E ~ -~�9 ,o~1-*(-'):. ~;~-,%% ( 1 9 )  

In sum 

C0mplete System of Equations (limiting problem). Whenm= -2, Eqs. ((4a), 
and the boundary conditions (obtained in [6]) 

,(o) I + a ) = O ,  Vl(+__a ) 0, ~ ( ~ a ) = 0  (~ 2,3) u~ ) ( •  "pax~--  = = 

constitute a complete system of equations and boundary conditions for determination of the 
functions u2(~ u3 (~ Vl, r 

Cylindrical Rod of a Uniform Isotropic Material. Let QE = [-a, a] x S E be a cylinder, 
and let us assume that the material of the rod is uniform and istropic. The initial stresses 
are determined from the solution of the problem of the theory of elasticity for assigned 
forces N11. Its solution is o*ij = ~-2Nl1~il6jz (this can easily be proven). Then (17) 

and (19) take the form K~ = --Nil u (~ and K = 0, respectively. As a result, (18) and (20) 
8, iX 

become the classical equations of the bending of beam with initial stresses [ii]. 

Note on the Behavior of the Formulas for K~, K. Terms of the form <o*ij(-2)> enter into 

Eqs. (17) and (19) for K~, K. These terms can be calculated on the basis of the theory of ~ 
elasticity, which describes the preliminary tension of the rod. Let the initial stresses be 
determined from the solution of the theory of elasticity problem 

i Oif.j : ea/~ in Q~, 

o~ni = sbgi on S~, o~nj = h on re. ( 2 1 )  

Shown below are relations which follow in particular from insertion of the asymptotic ex- 

pansion for the initial stresses o*ij = E-4o*ij(-4) + -s-so*ij(-a) + g-2o*ij(-2) + ... into 
(21): 

* ( - 2 ) = F i i n Q ~  ( f i = 0  a t  a~ - - -3 ,  F~ =Ii  at  a =  3L oq,jy - -  . 

G ~ - 2 ) n j = G i  on y~ ( G i = 0  at b = ~ - - 2 ,  Gi = fi a t  b = - - 2 ) .  
�9 ( 2 2 )  

~ - 2 ) ( . r l ,  y) is periodic with respect  to Yl and has the period [0, m]. 

( 2 0 )  

(18), and (20) 
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We multiply the first equation in (22) by y~ and integrate over the UC PI with allowance 
for the remaining conditions from (22). We obtain 

<o~'~ - ' 1 >  = - -  < Y i y . >  - -  <Giy~>,  i = 1, 2 ,  3 .  ~ = 2 . 3 .  (23) 

The last expression is equal to zero when a ~ -3, b # -2. It follows from Eq. (23) that if 
the initial stresse s are not due to body or surface forces of the indicated magnitude, then 

K8 = -<o'11(-2)>u8!~, K = 0, i.e., in the given case the asymptotic formulas coincide with 

the classical formuias [ii]. When a = -3 or b = -2, the expressions for K~ and K may include 
nontrivial terms containing <o*~(-2) (connected with transverse compression of the rod) or 
<o*~i(-2)> (connected with transverse shear strains). 

Stability of the Beam in Tension. In the case of pure torsion (in the absence of axial 
tension and normal deflections and when f~ = f~ = 0), then torsion equations take the form 

/ *(--~) (2a) 

with the boundary conditions #(• = 0. The resulting problem is not the same as the 
problem presented in [i0, Sec. 6.4] on the torsion of a pretensioned rod. In particular, when 

a ~ -3 and b # -2, Eq. (24) takes the form Bl00~,ixlx = 0. The latter means that the struc- 
ture remains stable during torsion. 
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